Moving the Camera

Lecture 13

Robb T. Koether

Hampden-Sydney College

Mon, Sep 23, 2019

- The Viewing Transformation
- Calculating the Eye Coordinates
- Moving the Camera
- 4 Assignment

- The Viewing Transformation
- Calculating the Eye Coordinates
- Moving the Camera
- 4 Assignment

The default camera

Translate the camera

Rotate the camera vertically (pitch)

Rotate the camera horizontally (yaw)

- The camera's position may be determined by three quantities.
 - Pitch angle tilting forward (up or down).
 - Yaw angle left or right.
 - Distance distance from the look point.
- Given *pitch*, *yaw*, and *dist*, how do we compute the *x*-, *y*-, and *z*-coordinates of the camera?

The eye (or camera) position, the look point, and up

The pitch, yaw, and dist

Let φ be the pitch and θ the yaw

- 1 The Viewing Transformation
- Calculating the Eye Coordinates
- Moving the Camera
- 4 Assignment

• The vertical distance (elevation, or y) from the xz-plane to eye is $dist \cdot \sin \varphi.$

• The vertical distance (elevation, or y) from the xz-plane to eye is $dist \cdot \sin \varphi.$

• The horizontal distance from *look* to directly under *eye* is

 $dist \cdot \cos \varphi$.

• The vertical distance (elevation, or y) from the xz-plane to eye is

$$dist \cdot \sin \varphi$$
.

The horizontal distance from look to directly under eye is

$$dist \cdot \cos \varphi$$
.

Thus, the x coordinate is

$$(dist \cdot \cos \varphi) \sin \theta$$

and the z-coordinate is

 $(dist \cdot \cos \varphi) \cos \theta$.

Calculating the Camera's Coordinates

```
x = dist \cdot \cos \varphi \sin \theta,

y = dist \cdot \sin \varphi,

z = dist \cdot \cos \varphi \cos \theta.
```

This calculation of eye should be placed in the setView() function.

- The Viewing Transformation
- Calculating the Eye Coordinates
- Moving the Camera
- 4 Assignment

Moving the Camera

- To move the camera, we will modify yaw, pitch, and dist.
- We want the user interface to be simple and intuitive.
 - Drag the mouse left or right to change yaw.
 - Drag the mouse up or down to change pitch.
 - Roll the mouse wheel to change *dist*.

The Yaw Angle

- For the yaw angle, let the width of the window represent 180°.
- Let old_x and old_y be where the mouse was last clicked, as reported by the mousebutton callback function (and later updated in the cursor position callback function).
- In the cursor position callback function, xpos and ypos will be the current coordinates.

The Yaw Angle

The Yaw Angle

```
float d_yaw = (float)(xpos - old_x)/fb_width*180.0f;
yaw += d_yaw;
old_x = xpos;
```

• Write similar code for pitch.

The Distance

- For the distance to the look point, let each click of the wheel represent a 5% change.
- The change should be small enough that zooming appears to be smooth.
- A forward rotation will replace dist with dist/1.05f.
- A backward rotation will replace dist with 1.05f*dist.

The Distance

The Distance

```
if (yoffset > 0)
    dist /= 1.05f;
else
    dist *= 1.05f;
```

- 1 The Viewing Transformation
- Calculating the Eye Coordinates
- Moving the Camera
- 4 Assignment

Assignment

Assignment

• Assignment 12.